
ABSTRACT: Structural Health Monitoring (SHM) aims primarily to accurately identify the current state of a structure, 

assessing damage levels and eventually allowing to predict its future performance. In civil engineering structures, SHM is often 

responsible for ensuring public safety while handling with large and complex data. Such monitoring problems can be difficult to 

solve by conventional computing techniques alone, as they require the acquisition of large data sets that need to be thoroughly 

and carefully analyzed. This yields big data opportunities to use artificial intelligence methodologies. This paper presents the 

integration of machine learning (ML) techniques for pattern recognition in SHM systems of civil engineering structures. The 

developed SHM consists of data acquisition both from time series of values observed at regular intervals and from structurally 

relevant measured values, called events, where specific data are collected. ML is used in the development of statistical models 

for feature discrimination. Events are classified into different clusters in a semi-supervised learning procedure, which is an 

extension of an unsupervised learning to allow their identification. A real-world SHM implementation is presented as a case 

study of the ML application. It consists of an industrial steel tower structure, containing several mechanical equipment with 

different loads, which operate at various frequencies. A sensor network is installed, acquiring data on strains, accelerations, and 

weather conditions. A visualization user interface is provided to access all data through a user friendly and accessible tool. The 

paper presents the main results obtained and illustrates the potentialities of the applied ML methodology. 
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1 INTRODUCTION 

Assessing and ensuring the safety of structures and people is 

the main goal of Structural Health Monitoring (SHM) systems 

applied to civil engineering structures. Economic benefits are 

also expected if a predictive model can successfully forecast 

the remaining service life and need for maintenance 

interventions. Structural damages, as well as their location and 

severity, need to be accurately detected before too long. To 

this end, different types of SHM systems have been proposed 

and implemented in recent decades, such as vibration based 

[1], guided wave based [2], and computer vision-based [3].  

Vibration based techniques are a commonly researched area 

for global damage diagnosis. In the damage detection process, 

it is first necessary to determine the occurrence of damage 

according to the global change in structural integrity, by 

identifying differences in the vibration data before and after 

the damage occurs. The measured time domain can be 

converted into frequency domain or modal domain by 

transforming techniques [1]. Time domain approaches can be 

more straightforward and might eliminate the need for domain 

transformations. Data-driven time series methods use well-

established statistical concepts. Along with data fusion, data-

driven approaches are used to transform massive data 

obtained from monitoring into meaningful information [4].  

The great amount of data provided by SHM yields big data 

opportunities to use Artificial Intelligence methodologies that 

allow automatic monitoring, which ideally should be able to 

assess structural integrity. Machine Learning (ML) is a subset 

of Artificial Intelligence that incorporates mathematics and 

statistics in such a way that allows machines to learn hidden 

rules and patterns in data. In SHM applications, ML has 

proven to be a powerful technique that can also contribute to 

determining the location and severity of damage [5]. ML 

algorithms are generally catalogued in the literature in two 

broad categories, according to the nature of learning: 

supervised learning; unsupervised learning [6, 7]. Supervised 

learning makes use of “labeled data”, encompassing an 

attempt to classify new data sets using known pairs of input 

data and output data. This type of ML includes regression 

methods, aimed at predicting quantities, and classification 

methods, aimed at predicting labels. In classification methods, 

training datasets are usually required, with many samples of 

each class label. Examples of classification methods are k-

nearest neighbors, support vector machines, and decision 

trees. Unsupervised learning provides a learning scheme with 

“unlabeled data”, fitting data sets with unspecified outputs. 

Examples are clustering methods, such as k-means and 

spectral clustering, which are able to split datasets into groups 

base on their similarities. Worden et al. [8] suggested the use 

of unsupervised learning identify the existence and location of 

damage, while identifying the type and severity of damage 

can generally only be done through supervised learning. More 

recently, a third category of ML is catalogued as semi-

supervised learning. This represents a combination of the two 

learning schemes mentioned above, typically with the aim of 

obtaining a classification of data using both “labeled data” and 

“unlabeled data” [9]. 

This paper presents an SHM methodology applied to civil 

engineering structures. The methodology includes an ML 

approach to discriminate influences on signals driven by 
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operational conditions, as well as changes in environmental 

conditions. The case study of an industrial steel tower 

structure, with a large amount of mechanical equipment, is 

used to validate the methodology, using vibration 

measurements to assess the integrity of the structure over 

time.  

2 METHODOLOGY 

2.1 Installation and Monitoring 

The methodology applied in the present work to monitor civil 

engineering structures follows the flowchart presented in 

Figure 1. The first steps relate to the installation procedure of 

the SHM system. Then, the system is implemented for long-

term continuous monitoring. 

In the installation process, it is first conducted a survey of 

structural and equipment elements. This is based on the 

project documentation and outcomes of software for 

production control and management of structures, from which 

it is possible to obtain the real mechanical properties from 

laboratory test certificates of the raw material. Then, a 

computational modeling of the structural behavior is 

performed. After some in-situ vibration measurements, the 

computer model is recalibrated. Finally, with complete 

knowledge of the structure, the sensor network is designed 

and installed. 

The monitoring stage begins with the collection of data, 

made from two main sources: momentary long-term 

monitoring; and vibration events. The system is configured to 

perform measurements automatically on a fixed schedule, and 

according to data triggers such as threshold exceedances. The 

sensors used are mainly composed of tri-axial accelerometers, 

inclinometers, strain gauges, as well as temperature, humidity, 

and other weather-related sensors. When applying the SHM 

systems in bridges, a set of sensors for a weigh-in-motion 

measurement systems might also be used. After the raw data 

is collected, it is processed, with data cleansing and 

computations. In addition, there is a signal processing 

procedure, where transformation of vibration signal to its 

equivalent frequency domain occurs, using the fast Fourier 

transform. This includes evaluating the frequency response, 

with natural frequencies determined through a peak picking 

procedure [10]. The subsequent step is to make a 

characterization of the structure behavior, using all the 

pertinent data. This behavior characterization is done through 

an ML algorithm as described in the following subsection. 

Then, the study is directed to a time-series analysis of the 

structural behavior in each type of event. In particular, the 

variability of eigenfrequencies when the structure is classified 

as stationary, without vibrations induced by operations, is 

compared with historical baseline values. When potential 

damage is identified, structural computer modeling from the 

installation stage can be used and updated to assist in the 

evaluation of the location and severity of the damage. 

Afterwards, repair and maintenance procedures can be 

planned and performed with confidence. 

 

Figure 1. Flowchart of the proposed methodology for SHM 

 

All the steps of the monitoring stage represented in Figure 1 

are made automatically. Data is transferred and contained in a 

secure cloud storage, and can be accessed by system 

administrators, while visualized in a web-based platform. To 

this end, a dashboard app is made available to the owners and 

defined users of the structure. This web-app can be accessed 

through any browser, showing near real-time data about the 

structure, as well as its behavior characterization. In addition, 

an alert system sends direct warnings via SMS and email 

when severe actions on the structure are identified. 

2.2 Behavior characterization algorithm 

The algorithm developed in this paper for the characterization 

of structural behavior is inspired by semi-supervised learning 

techniques, aiming to obtain a classification of data both from 

“unlabeled data” and from a small set of “labeled data”. 

Therefore, an unsupervised k-means clustering technique is 

used, followed by an assignment technique to appropriately 

allocate a classification for unlabeled data. 

Figure 2 shows the flowchart of the algorithm developed for 

behavior characterization. Once all the data is collected and 

processed, the data from all vibration events are used as an 

input for classification. Some specific events are easily 

identified and can be classified manually by the structure 

owners or defined users, or alternatively by the monitoring 

administrators. In parallel, the k-means clustering algorithm is 

processed assuming all data as unlabeled. Before applying the 

k-means clustering, data is normalized for all variables used 

as input.  

The k-means clustering algorithm groups the observations 

available in k clusters. The cluster centers, called centroids, 

are randomly distributed at first, and each data point is 

assigned to the cluster of its nearest centroid in terms of 

Euclidean distance. Each centroid is then updated to be the 

average of the points assigned to it. The data points are 

reassigned to the new cluster and the cluster centroids are 

recalculated. These operations are repeated until a stop 

criterion is met, such as the centroids of the clusters do not 

change or a maximum number of iterations is reached. 



The number of clusters, k value, can be set by users, which 

means that it should match the number of labels predefined by 

them. However, the value of k can also be optimized [11]. 

Indeed, there may be other events that have not yet been 

labeled during manual description. Therefore, in order to 

identify the appropriate number of clusters, the compactness 

of the clusters can be evaluated, for example, comparing the 

total between-cluster sum of squares with to the total sum of 

square. A higher value for this ratio value suggests a better 

compactness of individuals within cluster. Since this ratio 

increases with k, the ‘elbow’ method can be used to select the 

best k, which should occur at the location where the curve 

flattens markedly. 

The assignment problem technique is one of the earliest 

applications of linear integer programming [12]. Its typical 

goal is to assign tasks to assignees, which can be people, 

machines, plants, etc. Different algorithms are available to 

solve assignment problems extremely efficiently as long some 

assumptions are satisfied: the number of assignees and the 

number of tasks must be the same; each assignee must be 

assigned to exactly one task; each task must be performed by 

exactly one assignee; and there must be a cost associated with 

an assignee performing a certain task. The objective is to 

determine how all assignments should be made to minimize 

the total cost. The Hungarian method is a well-known 

example of an extremely efficiently algorithm to solve the 

assignment problem [13]. 

The assignment problem can be used to assign the label of 

the manual description of events to the output of the k-means 

clustering, which are unlabeled clusters. Instead of a cost 

minimization problem, this assignment problem consists of 

maximizing the number of times that each label appears in a 

cluster. In summary, the label is assigned to the cluster where 

it was most named during the manual description. It should be 

expected that all the same labels belong to the same cluster. If 

the number of clusters, k, is larger than the number of unique 

labels, cluster that are not assigned to any label are identified 

as “unknown_1”, “unknown_2”, etc., and are marked to be 

manually labeled in the future. 

 

 

Figure 2. Flowchart of the algorithm for behavior 

characterization 

3 CASE STUDY 

The case study refers to a steel tower structure, 28 m high, 

located in the District of Coimbra, in Portugal (see Figure 3). 

The steel structure is used for industrial purposes and includes 

several mechanical equipment operating at varying schedules. 

The vibration induced during its activity influences the 

structural behavior and might contribute to issues such as 

fatigue and loss of connection stiffness. 

3.1 Installation 

3.1.1 Structural analysis 

The preliminary stage was the analysis of the structure. After 

the first study and analysis of the structural documentation, 

and the consequent development of a computer modeling of 

the structure and its structural behavior, a set of in-situ 

vibrations measurements was carried out.  

The measurements were performed with accelerometers, 

aimed at using the vibration signal obtained to determine the 

natural frequencies of the structure. To this end, tri-axial 

accelerometers contained in the sensors to be used during the 

monitoring were used, but also piezoelectric accelerometers to 

validate the quality of the solution. With the obtained data was 

also possible to analyze natural frequencies and the structural 

modes of vibration. 

These in-situ measurements lead to a recalibration of the 

computer modeling of the structure. During this step, an 

additional external sound barrier wall made of sandwich 

panels was included, which had been inserted in one of the 

facades of the structure since the first computer modeling. The 

results showed similar vibration modes, with the natural 

frequencies differing less than 0.2 Hz. The computer 

modeling also allowed the knowledge of the structure and the 

locations with higher stress, assisting in the decision of the 

sensor network design. 

3.1.2 Installation of the sensor network 

The implemented SHM was optimized for the structure in 

order to provide meaningful and insightful data for the 

analysis of structural behavior. 

The system consists of a wired network of 9 main locations, 

all including tri-axial accelerometers, temperature, and 

relative humidity sensors. The bottom 2 locations also include 

strain gauges. In addition, there is a weather station for 

environmental data, and a gateway to manage system data and 

send it through an LTE network. Figure 3 shows the industrial 

steel tower structure with the approximate location of the 

different sensors, gateway, and weather station. 



 

Figure 3. Industrial steel tower structure of the case study. 

 

3.2 Main monitoring 

Data collection is processed continuously on the 

administration servers. The transformed data, including some 

statistical parameters and signal processing results, is 

allocated on a specialized cloud server.  

The output data can be visualized in a web-app. A concise 

report is delivered monthly to the client. When some 

thresholds exceed certain limits or the data is identified as 

dangerous events, the client receives alerts by SMS and email. 

Following are shown some examples of the outputs of this 

installation. 

3.2.1 Long-term monitoring 

This type of data is collected momentarily, at regular intervals 

of 5 minutes, with the aim of evaluating both actions and 

structural responses over time. In the steel structure of this 

case study, the data collected consists of weather data and 

strains. Figure 4 shows different long-term monitoring data at 

a seasonal scale. The data can also be visualized in more 

detail, such as in daily scale. 

 

Figure 4. Example of long-term monitoring data 



3.2.2 Events 

Events data mainly consists of vibration data collected at 

regular intervals of 30 minutes. In threshold exceedances, 

vibration data is also collected. The thresholds are updated 

dynamically, either increasing or decreasing to preset values 

automatically by the system, avoiding onerous and redundant 

measurements.  

During the collection of vibration data, weather data and 

strain data are also collected, to evaluate actions on the 

structure and its structural response. 

Figure 5 shows an example of an event, which occurred 

after a threshold of strong wind was verified. During this 

event, the wind speed was around 60 km/h, with a NE 

direction. 

 

 

Figure 5. Accelerations and strains during a vibration event of 

strong wind 

 

3.2.3 Frequencies analysis 

The spectral analysis of the vibration signals is made for all 

vibration events through a peak picking procedure in the 

Fourier transform of the recorded signals. Together with the 

classification made through the ML algorithm, it is possible to 

analyze the natural frequencies of the structure while it is not 

affected by the operation of the industrial mechanical 

equipment. Figure 6 shows the Fourier transform of the x-axis 

direction in the sensors at the top of the structure.  

 

 

Figure 6. Frequency spectrum during an event 

 

3.3 Behavior characterization 

The Behavior characterization algorithm is executed regularly 

to classify the data and allow the update of the structural 

integrity evaluation. The variables used as input to the 

algorithm refer to all accelerations, strains and wind, for 

different sensor channels and for all vibration events. 

In this case study, four main type of vibration events were 

labeled in the manual description. These events are: in 

operation, when all mechanical equipment is in normal 

operation; in partial operation, when only some of the 

mechanical equipment is operating; stationary, when there is 

no operation; and exceptional, when unusual conditions are 

observed. Figure 7 provides the plot of the explained variation 

as a function of the number of clusters. When applying the 

elbow method to the curve, it was defined the consideration of 

four clusters, coinciding with the unique clusters defined in 

the manual description. This elbow method should be updated 

occasionally, in particular when new manual descriptions are 

inserted. 

 

 

Figure 7. Elbow method applied for k-means clustering. 

 

As the data used has several variables, it is not possible to 

plot the global clustering obtained. However, it is possible to 

draw a two-dimensional clustering plot showing the two 

components that most explain data variability, as presented in 

Figure 8. After the labels are assigned to the clusters, it is 

possible to identify, for example, the exceptional cluster 

events, located at the upper right red area of Figure 8. 

 

 

Figure 8. Clustering plot for the two principal components 

 

3.4 Structural integrity evaluation 

To assess the structural integrity, the evolution of the 

eigenfrequencies of the structure is analyzed. Given the 

classification provided by the behavior characterization, the 

analysis is made focusing on vibration events where the 

structure is classified as stationary, allowing a better 



assessment of natural frequencies. Figure 9 shows a time 

series of the evolution of the main peaks of natural 

frequencies measured in the sensor at 7-P2, observed since the 

beginning of structural monitoring. For instance, the first 

mode of vibration of the structure on this axis, around 

1,90 Hz, has not shown any significant variation. The existing 

variability can be correlated with changes in environmental 

conditions. 

 

 

Figure 9. Second sample figure. 

 

4 CONCLUSION 

This paper presents a methodology for structural health 

monitoring applied to civil engineering structures. The 

methodology includes an ML approach, and was successfully 

implemented in the installation and monitoring system of an 

industrial steel tower structure, with a large amount of 

mechanical equipment. The approach was able to classify the 

different events occurring in the structure. A large set of 

vibration measurements over time allowed the visualization of 

the structural behavior in different situations 

The proposed approach is also able to provide a real-time 

feedback on structural integrity. As the ML algorithm used is 

applied for every new event and more historical data and 

information is known about the classification of events, 

potential damage to the structure is more securely identified. 

To improve the ML accuracy, including the ability to identify 

the type and severity of damage, further experiments will be 

conducted, including laboratorial simulations of damage in 

similar structures. Future works will involve the development 

of more sophisticated analysis using power spectral functions 

matrices and frequency domain decomposition, aiming at 

improving and automatizing predictive modelling and damage 

detection. 

ACKNOWLEDGMENTS 

The authors are grateful for the support received from the 

Portugal 2020, through the program “Projetos de I&D - 

Projetos Individuais” 4/SI/2018, co-financed by the European 

Fund FEDER.  

REFERENCES 

[1] Kong, X., Cai, C.S., and Hu, J., The state-of-the-art on framework of 

vibration-based structural damage identification for decision making. 

Applied Sciences, 7(5), 497, 2017.  

[2] Mitra, M., and Gopalakrishnan, S., Guided wave based structural health 

monitoring: A review. Smart Materials and Structures, 25(5), 053001, 

2016. 

[3] Dong, C.Z., and Catbas, F.N., A review of computer vision–based 

structural health monitoring at local and global levels. Structural 

Health Monitoring, in press, 2020. 

[4] Khoa, N.L.D., Alamdari, M.M., Rakotoarivelo, T., Anaissi, A., and 

Wang, Y., Structural health monitoring using machine learning 

techniques and domain knowledge based features. In: Human and 

Machine Learning (pp. 409-435). Springer, Cham, 2018. 

[5] Kurian, B., and Liyanapathirana, R., Machine Learning Techniques for 

Structural Health Monitoring. In: Proceedings of the 13th International 

Conference on Damage Assessment of Structures (pp. 3-24). Springer, 

Singapore, 2020. 

[6] Kotsiantis, S.B., Zaharakis, I., and Pintelas, P., Supervised machine 

learning: A review of classification techniques. Emerging artificial 

intelligence applications in computer engineering, 160(1), 3-24, 2007. 

[7] Gentleman, R., and Carey, V.J., Unsupervised machine learning. In 

Bioconductor case studies (pp. 137-157). Springer, New York, NY, 

2008. 

[8] Worden, K., Farrar, C.R., Manson, G., and Park, G., The fundamental 

axioms of structural health monitoring. Proceedings of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, 

463(2082), 1639-1664, 2007. 

[9] Zhu, X., and Goldberg, A.B., Introduction to semi-supervised learning. 

Synthesis lectures on artificial intelligence and machine learning, 3(1), 

1-130, 2009. 

[10] Bendat, J.S., and Piersol, A.G., Random data: analysis and 

measurement procedures (Vol. 729). John Wiley & Sons, 2011. 

[11] Tibshirani, R., Walther, G., and Hastie, T., Estimating the number of 

clusters in a data set via the gap statistic. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 63(2), 411-423, 

2001. 

[12] Eiselt, H.A., and Sandblom, C.L., Integer programming and network 

models. Springer Science & Business Media, 2013. 

[13] Kuhn, H.W., The Hungarian method for the assignment problem. Naval 

research logistics quarterly, 2(1‐2), 83-97, 1955. 

 


