Application of machine learning in monitoring systems of civil structures
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ABSTRACT: Structural Health Monitoring (SHM) aims primarily to accurately identify the current state of a structure,
assessing damage levels and eventually allowing to predict its future performance. In civil engineering structures, SHM is often
responsible for ensuring public safety while handling with large and complex data. Such monitoring problems can be difficult to
solve by conventional computing techniques alone, as they require the acquisition of large data sets that need to be thoroughly
and carefully analyzed. This yields big data opportunities to use artificial intelligence methodologies. This paper presents the
integration of machine learning (ML) techniques for pattern recognition in SHM systems of civil engineering structures. The
developed SHM consists of data acquisition both from time series of values observed at regular intervals and from structurally
relevant measured values, called events, where specific data are collected. ML is used in the development of statistical models
for feature discrimination. Events are classified into different clusters in a semi-supervised learning procedure, which is an
extension of an unsupervised learning to allow their identification. A real-world SHM implementation is presented as a case
study of the ML application. It consists of an industrial steel tower structure, containing several mechanical equipment with
different loads, which operate at various frequencies. A sensor network is installed, acquiring data on strains, accelerations, and
weather conditions. A visualization user interface is provided to access all data through a user friendly and accessible tool. The

paper presents the main results obtained and illustrates the potentialities of the applied ML methodology.
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1 INTRODUCTION

Assessing and ensuring the safety of structures and people is
the main goal of Structural Health Monitoring (SHM) systems
applied to civil engineering structures. Economic benefits are
also expected if a predictive model can successfully forecast
the remaining service life and need for maintenance
interventions. Structural damages, as well as their location and
severity, need to be accurately detected before too long. To
this end, different types of SHM systems have been proposed
and implemented in recent decades, such as vibration based
[1], guided wave based [2], and computer vision-based [3].
Vibration based techniques are a commonly researched area
for global damage diagnosis. In the damage detection process,
it is first necessary to determine the occurrence of damage
according to the global change in structural integrity, by
identifying differences in the vibration data before and after
the damage occurs. The measured time domain can be
converted into frequency domain or modal domain by
transforming techniques [1]. Time domain approaches can be
more straightforward and might eliminate the need for domain
transformations. Data-driven time series methods use well-
established statistical concepts. Along with data fusion, data-
driven approaches are used to transform massive data
obtained from monitoring into meaningful information [4].
The great amount of data provided by SHM yields big data
opportunities to use Artificial Intelligence methodologies that
allow automatic monitoring, which ideally should be able to
assess structural integrity. Machine Learning (ML) is a subset
of Artificial Intelligence that incorporates mathematics and
statistics in such a way that allows machines to learn hidden

rules and patterns in data. In SHM applications, ML has
proven to be a powerful technique that can also contribute to
determining the location and severity of damage [5]. ML
algorithms are generally catalogued in the literature in two
broad categories, according to the nature of learning:
supervised learning; unsupervised learning [6, 7]. Supervised
learning makes use of “labeled data”, encompassing an
attempt to classify new data sets using known pairs of input
data and output data. This type of ML includes regression
methods, aimed at predicting quantities, and classification
methods, aimed at predicting labels. In classification methods,
training datasets are usually required, with many samples of
each class label. Examples of classification methods are k-
nearest neighbors, support vector machines, and decision
trees. Unsupervised learning provides a learning scheme with
“unlabeled data”, fitting data sets with unspecified outputs.
Examples are clustering methods, such as k-means and
spectral clustering, which are able to split datasets into groups
base on their similarities. Worden et al. [8] suggested the use
of unsupervised learning identify the existence and location of
damage, while identifying the type and severity of damage
can generally only be done through supervised learning. More
recently, a third category of ML is catalogued as semi-
supervised learning. This represents a combination of the two
learning schemes mentioned above, typically with the aim of
obtaining a classification of data using both “labeled data” and
“unlabeled data” [9].

This paper presents an SHM methodology applied to civil
engineering structures. The methodology includes an ML
approach to discriminate influences on signals driven by



operational conditions, as well as changes in environmental
conditions. The case study of an industrial steel tower
structure, with a large amount of mechanical equipment, is
used to validate the methodology, using vibration
measurements to assess the integrity of the structure over
time.

2 METHODOLOGY

2.1 Installation and Monitoring

The methodology applied in the present work to monitor civil
engineering structures follows the flowchart presented in
Figure 1. The first steps relate to the installation procedure of
the SHM system. Then, the system is implemented for long-
term continuous monitoring.

In the installation process, it is first conducted a survey of
structural and equipment elements. This is based on the
project documentation and outcomes of software for
production control and management of structures, from which
it is possible to obtain the real mechanical properties from
laboratory test certificates of the raw material. Then, a
computational modeling of the structural behavior is
performed. After some in-situ vibration measurements, the
computer model is recalibrated. Finally, with complete
knowledge of the structure, the sensor network is designed
and installed.

The monitoring stage begins with the collection of data,
made from two main sources: momentary long-term
monitoring; and vibration events. The system is configured to
perform measurements automatically on a fixed schedule, and
according to data triggers such as threshold exceedances. The
sensors used are mainly composed of tri-axial accelerometers,
inclinometers, strain gauges, as well as temperature, humidity,
and other weather-related sensors. When applying the SHM
systems in bridges, a set of sensors for a weigh-in-motion
measurement systems might also be used. After the raw data
is collected, it is processed, with data cleansing and
computations. In addition, there is a signal processing
procedure, where transformation of vibration signal to its
equivalent frequency domain occurs, using the fast Fourier
transform. This includes evaluating the frequency response,
with natural frequencies determined through a peak picking
procedure [10]. The subsequent step is to make a
characterization of the structure behavior, using all the
pertinent data. This behavior characterization is done through
an ML algorithm as described in the following subsection.
Then, the study is directed to a time-series analysis of the
structural behavior in each type of event. In particular, the
variability of eigenfrequencies when the structure is classified
as stationary, without vibrations induced by operations, is
compared with historical baseline values. When potential
damage is identified, structural computer modeling from the
installation stage can be used and updated to assist in the
evaluation of the location and severity of the damage.
Afterwards, repair and maintenance procedures can be
planned and performed with confidence.
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Figure 1. Flowchart of the proposed methodology for SHM

All the steps of the monitoring stage represented in Figure 1
are made automatically. Data is transferred and contained in a
secure cloud storage, and can be accessed by system
administrators, while visualized in a web-based platform. To
this end, a dashboard app is made available to the owners and
defined users of the structure. This web-app can be accessed
through any browser, showing near real-time data about the
structure, as well as its behavior characterization. In addition,
an alert system sends direct warnings via SMS and email
when severe actions on the structure are identified.

2.2 Behavior characterization algorithm

The algorithm developed in this paper for the characterization
of structural behavior is inspired by semi-supervised learning
techniques, aiming to obtain a classification of data both from
“unlabeled data” and from a small set of “labeled data”.
Therefore, an unsupervised k-means clustering technique is
used, followed by an assignment technique to appropriately
allocate a classification for unlabeled data.

Figure 2 shows the flowchart of the algorithm developed for
behavior characterization. Once all the data is collected and
processed, the data from all vibration events are used as an
input for classification. Some specific events are easily
identified and can be classified manually by the structure
owners or defined users, or alternatively by the monitoring
administrators. In parallel, the k-means clustering algorithm is
processed assuming all data as unlabeled. Before applying the
k-means clustering, data is normalized for all variables used
as input.

The k-means clustering algorithm groups the observations
available in k clusters. The cluster centers, called centroids,
are randomly distributed at first, and each data point is
assigned to the cluster of its nearest centroid in terms of
Euclidean distance. Each centroid is then updated to be the
average of the points assigned to it. The data points are
reassigned to the new cluster and the cluster centroids are
recalculated. These operations are repeated until a stop
criterion is met, such as the centroids of the clusters do not
change or a maximum number of iterations is reached.



The number of clusters, k value, can be set by users, which
means that it should match the number of labels predefined by
them. However, the value of k can also be optimized [11].
Indeed, there may be other events that have not yet been
labeled during manual description. Therefore, in order to
identify the appropriate number of clusters, the compactness
of the clusters can be evaluated, for example, comparing the
total between-cluster sum of squares with to the total sum of
square. A higher value for this ratio value suggests a better
compactness of individuals within cluster. Since this ratio
increases with k, the ‘elbow’ method can be used to select the
best k, which should occur at the location where the curve
flattens markedly.

The assignment problem technique is one of the earliest
applications of linear integer programming [12]. Its typical
goal is to assign tasks to assignees, which can be people,
machines, plants, etc. Different algorithms are available to
solve assignment problems extremely efficiently as long some
assumptions are satisfied: the number of assignees and the
number of tasks must be the same; each assignee must be
assigned to exactly one task; each task must be performed by
exactly one assignee; and there must be a cost associated with
an assignee performing a certain task. The objective is to
determine how all assignments should be made to minimize
the total cost. The Hungarian method is a well-known
example of an extremely efficiently algorithm to solve the
assignment problem [13].

The assignment problem can be used to assign the label of
the manual description of events to the output of the k-means
clustering, which are unlabeled clusters. Instead of a cost
minimization problem, this assignment problem consists of
maximizing the number of times that each label appears in a
cluster. In summary, the label is assigned to the cluster where
it was most named during the manual description. It should be
expected that all the same labels belong to the same cluster. If
the number of clusters, k, is larger than the number of unique
labels, cluster that are not assigned to any label are identified
as “unknown_1”, “unknown_2”, etc., and are marked to be
manually labeled in the future.
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Figure 2. Flowchart of the algorithm for behavior
characterization

3 CASE STUDY

The case study refers to a steel tower structure, 28 m high,
located in the District of Coimbra, in Portugal (see Figure 3).
The steel structure is used for industrial purposes and includes
several mechanical equipment operating at varying schedules.
The vibration induced during its activity influences the
structural behavior and might contribute to issues such as
fatigue and loss of connection stiffness.

3.1 Installation

3.1.1  Structural analysis

The preliminary stage was the analysis of the structure. After
the first study and analysis of the structural documentation,
and the consequent development of a computer modeling of
the structure and its structural behavior, a set of in-situ
vibrations measurements was carried out.

The measurements were performed with accelerometers,
aimed at using the vibration signal obtained to determine the
natural frequencies of the structure. To this end, tri-axial
accelerometers contained in the sensors to be used during the
monitoring were used, but also piezoelectric accelerometers to
validate the quality of the solution. With the obtained data was
also possible to analyze natural frequencies and the structural
modes of vibration.

These in-situ measurements lead to a recalibration of the
computer modeling of the structure. During this step, an
additional external sound barrier wall made of sandwich
panels was included, which had been inserted in one of the
facades of the structure since the first computer modeling. The
results showed similar vibration modes, with the natural
frequencies differing less than 0.2 Hz. The computer
modeling also allowed the knowledge of the structure and the
locations with higher stress, assisting in the decision of the
sensor network design.

3.1.2 Installation of the sensor network

The implemented SHM was optimized for the structure in
order to provide meaningful and insightful data for the
analysis of structural behavior.

The system consists of a wired network of 9 main locations,
all including tri-axial accelerometers, temperature, and
relative humidity sensors. The bottom 2 locations also include
strain gauges. In addition, there is a weather station for
environmental data, and a gateway to manage system data and
send it through an LTE network. Figure 3 shows the industrial
steel tower structure with the approximate location of the
different sensors, gateway, and weather station.



Figure 3. Industrial steel tower structure of the case study.

3.2 Main monitoring

Data collection is processed continuously on the
administration servers. The transformed data, including some
statistical parameters and signal processing results, is
allocated on a specialized cloud server.

The output data can be visualized in a web-app. A concise
report is delivered monthly to the client. When some
thresholds exceed certain limits or the data is identified as
dangerous events, the client receives alerts by SMS and email.
Following are shown some examples of the outputs of this
installation.

3.2.1  Long-term monitoring

This type of data is collected momentarily, at regular intervals
of 5 minutes, with the aim of evaluating both actions and
structural responses over time. In the steel structure of this
case study, the data collected consists of weather data and
strains. Figure 4 shows different long-term monitoring data at
a seasonal scale. The data can also be visualized in more
detail, such as in daily scale.
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Figure 4. Example of long-term monitoring data



3.2.2 Events

Events data mainly consists of vibration data collected at
regular intervals of 30 minutes. In threshold exceedances,
vibration data is also collected. The thresholds are updated
dynamically, either increasing or decreasing to preset values
automatically by the system, avoiding onerous and redundant
measurements.

During the collection of vibration data, weather data and
strain data are also collected, to evaluate actions on the
structure and its structural response.

Figure 5 shows an example of an event, which occurred
after a threshold of strong wind was verified. During this
event, the wind speed was around 60 km/h, with a NE
direction.
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Figure 5. Accelerations and strains during a vibration event of
strong wind
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3.2.3  Frequencies analysis

The spectral analysis of the vibration signals is made for all
vibration events through a peak picking procedure in the
Fourier transform of the recorded signals. Together with the
classification made through the ML algorithm, it is possible to
analyze the natural frequencies of the structure while it is not
affected by the operation of the industrial mechanical
equipment. Figure 6 shows the Fourier transform of the x-axis
direction in the sensors at the top of the structure.
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Figure 6. Frequency spectrum during an event

3.3 Behavior characterization

The Behavior characterization algorithm is executed regularly
to classify the data and allow the update of the structural
integrity evaluation. The variables used as input to the
algorithm refer to all accelerations, strains and wind, for
different sensor channels and for all vibration events.

In this case study, four main type of vibration events were
labeled in the manual description. These events are: in
operation, when all mechanical equipment is in normal
operation; in partial operation, when only some of the
mechanical equipment is operating; stationary, when there is
no operation; and exceptional, when unusual conditions are
observed. Figure 7 provides the plot of the explained variation
as a function of the number of clusters. When applying the
elbow method to the curve, it was defined the consideration of
four clusters, coinciding with the unique clusters defined in
the manual description. This elbow method should be updated
occasionally, in particular when new manual descriptions are
inserted.
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Figure 7. EIbow method applied for k-means clustering.

As the data used has several variables, it is not possible to
plot the global clustering obtained. However, it is possible to
draw a two-dimensional clustering plot showing the two
components that most explain data variability, as presented in
Figure 8. After the labels are assigned to the clusters, it is
possible to identify, for example, the exceptional cluster
events, located at the upper right red area of Figure 8.
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Figure 8. Clustering plot for the two principal components

3.4  Structural integrity evaluation

To assess the structural integrity, the evolution of the
eigenfrequencies of the structure is analyzed. Given the
classification provided by the behavior characterization, the
analysis is made focusing on vibration events where the
structure is classified as stationary, allowing a better



assessment of natural frequencies. Figure 9 shows a time
series of the evolution of the main peaks of natural
frequencies measured in the sensor at 7-P2, observed since the
beginning of structural monitoring. For instance, the first
mode of vibration of the structure on this axis, around
1,90 Hz, has not shown any significant variation. The existing
variability can be correlated with changes in environmental
conditions.
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Figure 9. Second sample figure.

4  CONCLUSION

This paper presents a methodology for structural health
monitoring applied to civil engineering structures. The
methodology includes an ML approach, and was successfully
implemented in the installation and monitoring system of an
industrial steel tower structure, with a large amount of
mechanical equipment. The approach was able to classify the
different events occurring in the structure. A large set of
vibration measurements over time allowed the visualization of
the structural behavior in different situations

The proposed approach is also able to provide a real-time
feedback on structural integrity. As the ML algorithm used is
applied for every new event and more historical data and
information is known about the classification of events,
potential damage to the structure is more securely identified.
To improve the ML accuracy, including the ability to identify
the type and severity of damage, further experiments will be
conducted, including laboratorial simulations of damage in
similar structures. Future works will involve the development
of more sophisticated analysis using power spectral functions
matrices and frequency domain decomposition, aiming at
improving and automatizing predictive modelling and damage
detection.
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